- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
medium
यदि रेखीय समीकरण निकाय
$2 x + y - z =7$
$x -3 y +2 z =1$
$x +4 y +\delta z = k$ है, जहाँ $\delta, k \in R$ के अनंत हल है, तो $\delta+ k$ बराबर है :
A
$-3$
B
$3$
C
$6$
D
$9$
(JEE MAIN-2022)
Solution
$\quad\left|\begin{array}{ccc}2 & 1 & -1 \\ 1 & -3 & 2 \\ 1 & 4 & \delta\end{array}\right|=0$
$\Rightarrow \delta=-3$
And $\left|\begin{array}{ccr}7 & 1 & -1 \\ 1 & -3 & 2 \\ K & 4 & -3\end{array}\right|=0 \Rightarrow K =6$
$\Rightarrow \delta+ K =3$
Alternate
$2 x + y – z =7$ $\dots(1)$
$x-3 y+2 z=1$ $\dots(2)$
$x +4 y +\delta z = k$ $\dots(3)$
Equation $(2) + (3)$
We get $2 x+y+(2+\delta) z=1+K$ $\dots(4)$
For infinitely solution
Form equation $(1)$ and $(4)$
$2+\delta=-1 \Rightarrow \delta=-3$
$1+ k =7 \Rightarrow k =6$
$\delta+ k =3$
Standard 12
Mathematics
Similar Questions
hard